2:08 pm - Friday August 20, 2494

Đề thi học sinh giỏi Toán lớp 12 thành phố Đà Nẵng năm học 2013-2014

SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐÀ NẴNG
KỲ THI HỌC SINH GIỎI TOÁN THÀNH PHỐ LỚP 12
Năm học 2013-2014
Thời gian làm bài: 180 phút

Đề thi học sinh giỏi Toán lớp 12 tại Đà Nẵng

Bài 1: (5 điểm)

Tìm tất cả các hàm số f:\mathbb{R^*} \to \mathbb{R} sao cho f(x + y) = {x^2}f\left( {\frac{1}{x}} \right) + {y^2}f\left( {\frac{1}{y}} \right),\forall x,y \in \mathbb{R^*}

Bài 2: (5 điểm)

Cho n số nguyên dương x_1, x_2,...x_n đôi một khác nhau (n \ge 2). Đặt A=\{1,2,...,n\}. Với mội i \in A lấy {p_i} = \prod\limits_{j \in A\backslash \{ i\} } {({x_i} - {x_j})}. Chứng minh \sum\limits_{i \in A} {\frac{{{x_i}^k}}{{{p_i}}}} nguyên với mọi k tự nhiên.

Bài 3: (5 điểm)

Cho đường thẳng d và điểm A không nằm trên d. Gọi H là hình chiếu của A trên d và K là trung điểm của AH. Hai đường tròn (M), (N) di động nhưng luôn tiếp xúc với d và tiếp xúc với nhau tại A. Chứng minh:
a) Phương tích của K với đường tròn đường kính MN không đổi.
b) Chứng minh đường tròn đường kính MN luôn tiếp xúc với đường tròn cố định.

Bài 4: (5 điểm)

Cho bảng kẻ ô vuông kích thước (2n) \times (2n+1). Hãy tìm giá trị lớn nhất của k sao cho k thoả mãn điều kiện: ta có thể tô màu k ô vuông đơn vị của bảng sao cho không có hai ô vuông đơn vị nào được tô mà có đỉnh chung.

Bài 5: (6 điểm)

Cho số nguyên tố p>3. Gọi k = \left\lfloor {\frac{{2p}}{3}} \right\rfloor. Chứng minh:

\sum\limits_{i = 1}^k {C_p^i} \vdots {p^2}

Bài 6: (7 điểm)

Cho tam giác ABC và điểm C’ nằm trên đường thẳng AB. Chứng minh rằng:
a) Tồn tại duy nhất tam giác A’B'C’ đồng dạng với tam giác ABC mà các điểm A’ và B’ nằm lần lượt trên đường thẳng BC và AC.
b) Trực tâm của tam giác A’B'C’ không phụ thuộc vị trí của điểm C’ trên đường thẳng AB.

Bài 7: (7 điểm)

Cho (H) là một đa giác đều 24 cạnh. Mỗi đỉnh của (H) sẽ được tô bởi chỉ một trong hai màu xanh và đỏ. Khi đó, nếu (K) là một đa giác đều thoả mãn đồng thời hai điều kiện:
- Tập đỉnh của (K) là tập con của tập đỉnh của (H).
- Tất cả các đỉnh của (K) được tô bởi cùng một màu.
thì ta gọi (K) là một mẫu đơn sắc. Hãy tính số cách tô màu các đỉnh của (H) sao cho không có mẫu đơn sắc nào được tạo ra.

———————————— Hết ————————————

Filed in: Lớp 12, Đề thi học sinh giỏi

No comments yet.

Leave a Reply

You must be logged in to post a comment.